XGef mediates early CPEB phosphorylation during Xenopus oocyte meiotic maturation.

نویسندگان

  • Susana E Martínez
  • Lei Yuan
  • Charlemagne Lacza
  • Heather Ransom
  • Gwendolyn M Mahon
  • Ian P Whitehead
  • Laura E Hake
چکیده

Polyadenylation-induced translation is an important regulatory mechanism during metazoan development. During Xenopus oocyte meiotic progression, polyadenylation-induced translation is regulated by CPEB, which is activated by phosphorylation. XGef, a guanine exchange factor, is a CPEB-interacting protein involved in the early steps of progesterone-stimulated oocyte maturation. We find that XGef influences early oocyte maturation by directly influencing CPEB function. XGef and CPEB interact during oogenesis and oocyte maturation and are present in a c-mos messenger ribonucleoprotein (mRNP). Both proteins also interact directly in vitro. XGef overexpression increases the level of CPEB phosphorylated early during oocyte maturation, and this directly correlates with increased Mos protein accumulation and acceleration of meiotic resumption. To exert this effect, XGef must retain guanine exchange activity and the interaction with CPEB. Overexpression of a guanine exchange deficient version of XGef, which interacts with CPEB, does not enhance early CPEB phosphorylation. Overexpression of a version of XGef that has significantly reduced interaction with CPEB, but retains guanine exchange activity, decreases early CPEB phosphorylation and delays oocyte maturation. Injection of XGef antibodies into oocytes blocks progesterone-induced oocyte maturation and early CPEB phosphorylation. These findings indicate that XGef is involved in early CPEB activation and implicate GTPase signaling in this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes.

Meiotic progression in Xenopus oocytes, and all other oocytes investigated, is dependent on polyadenylation-induced translation of stockpiled maternal mRNAs. Early during meiotic resumption, phosphorylation of CPE-binding protein (CPEB) is required for polyadenylation-induced translation of mRNAs encoding cell cycle regulators. Xenopus Gef (XGef), a Rho-family guanine-exchange factor, influence...

متن کامل

Mechanism of degradation of CPEB during Xenopus oocyte maturation.

CPEB, a cytoplasmic polyadenylation element-binding protein, plays an important role in translational control of maternal mRNAs in early animal development. During Xenopus oocyte maturation, CPEB undergoes a Cdc2-mediated phosphorylation- and ubiquitin-dependent degradation that is required for proper entry into meiosis II. However, the precise mechanism of CPEB degradation, including the ident...

متن کامل

CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation.

Cell cycle transitions spanning meiotic maturation of the Xenopus oocyte and early embryogenesis are tightly regulated at the level of stored inactive maternal mRNA. We investigated here the translational control of cyclin E1, required for metaphase II arrest of the unfertilised egg and the initiation of S phase in the early embryo. We show that the cyclin E1 mRNA is regulated by both cytoplasm...

متن کامل

Role of cdc2 kinase phosphorylation and conserved N-terminal proteolysis motifs in cytoplasmic polyadenylation-element-binding protein (CPEB) complex dissociation and degradation.

Cytoplasmic polyadenylation-element-binding protein (CPEB) is a well-characterized and important regulator of translation of maternal mRNA in early development in organisms ranging from worms, flies and clams to frogs and mice. Previous studies provided evidence that clam and Xenopus CPEB are hyperphosphorylated at germinal vesicle breakdown (GVBD) by cdc2 kinase, and degraded shortly after. To...

متن کامل

Biochemical characterization of Pumilio1 and Pumilio2 in Xenopus oocytes.

Precise control of the timing of translational activation of dormant mRNAs stored in oocytes is required for normal progression of oocyte maturation. We previously showed that Pumilio1 (Pum1) is specifically involved in the translational control of cyclin B1 mRNA during Xenopus oocyte maturation, in cooperation with cytoplasmic polyadenylation element-binding protein (CPEB). It was reported tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2005